Polyvinyl Chloride Pipes System For Pressure Water, Drainage \& Sewerage, Electrical \& Communication

PVC- U

ENISO 1452, BSEN 1452, DIN 8062, ISO 161/1, BS 3505, ASTM D 1785, ASTM D 2241, BSEN 1401, BSEN 1329, BS 4660, BS 5255, BS 4514, BS 5481, DIN 19534 \& 19531, BS 4607, BS 3506, NEMA TC2, NEMA TC3, NEMA TC6, NEMA TC8, NEMA TC9, BSEN 61386, QCS

Pipesitech

شركة تكنولوجيـا الأنابيب ذ.م.م PIPES TECHNOLOGY CO. W.L.L.
"Our Clients deserves the highest Quality Thermoplastic Systems"

INTRODUCTION

Pipes Technology Co. W.L.L., known as PIPESTECH, was established in the state of Qatar since year 2003. PIPESTECH is registered under new commercial registration number 83608.

PIPESTECH specializes in supplying a wide range of high quality Thermoplastic piping network products, specifically HDPE, PVC, CPVC and PPR pipes fittings and valves for various applications such as water supply, sewage network, sub-surfaces water drainage system, irrigation network system and electrical communication cable protection networks. For industrial, commercial and domestic according to various internationally accredited standards, namely ISO, DIN, SASO, ASTM and BS EN standards.

PIPESTECH has a vast experience in construction market supplies in the State of Qatar through the cooperation of our valued principals namely - FIP (Formatura Iniezione Polimeri) - UPVC, CPVC, PVDF, PP-H pipes, fittings and valves, HDPE for buttwelding fittings - Italy; SYSTEM GROUP (SAB PP Channel drains, ITALIANA CORRUGATI - HDPE corrugated pipes and fittings - Italy); Fabco PVC Pipes; PPR Pipes and fittings; FAF VALVES - Turkey; FRIATEC HDPE Electro fusion fittings, machines, tools and accesories - Germany; IPEX PVC, CPVC Pipes \& Fittings - USA/CANADA; SPEARS CPVC fittings and valves - USA; RITMO Welding Machines - Italy; FRIATEC Welding Machines - Germany; CANDAN Welding Machines -Turkey; IPS WELDON solvent cements - USA; AKATHERM Dblue - Netherlands; WEFATHERM PPR - Pipe System - Germany and OATEY PVC floor drains - USA

uPVC Pressure Pipes for Water Distribution

SPECIFICATION	APPLICATION	RATING	SIZES
BS EN 1452 Inch	Pressure	PN9	1/2" $16^{\prime \prime}$
BS EN 1452 Inch	Pressure	PN12	1/2" 16 "
BS EN 1452 Inch	Pressure	PN15	$1 / 2$ " 16 "
EN ISO 1452 Metric	Pressure	PN6	40-400 mm
EN ISO 1452 Metric	Pressure	PN8	32-400 mm
EN ISO 1452 Metric	Pressure	PN10	32-400 mm
EN ISO 1452 Metric	Pressure	PN12.5	25-400 mm
EN ISO 1452 Metric	Pressure	PN16	20-400 mm
EN ISO 1452 Metric	Pressure	PN20	20-400 mm
EN ISO 1452 Metric	Pressure	PN25	110-200 mm
DIN 8062	Pressure	PN4	75-400 mm
DIN 8062	Pressure	PN6	50-400 mm
DIN 8062	Pressure	PN8	40-400 mm
DIN 8062	Pressure	PN10	32-400 mm
DIN 8062	Pressure	PN12.5	25-400 mm
DIN 8062	Pressure	PN16	20-400 mm
DIN 8062	Pressure	PN20	20-315 mm
DIN 8062	Pressure	PN25	20-280 mm
ISO 161/1	Pressure	PN6.3	50-400 mm
ISO 161/1	Pressure	PN10	40-400 mm
ISO 161/1	Pressure	PN16	20-400 mm
ISO 161/1	Pressure	PN20	20-400 mm
ISO 161/1	Pressure	PN25	20-400 mm
BS 3505	Pressure	Class B (6 Bar)	3-16 inch
BS 3505	Pressure	Class C (9 Bar)	2-16 inch
BS 3505	Pressure	Calss D (12 Bar)	11/4-16 inch
BS 3505	Pressure	Class E (15 Bar)	1/2-16 inch
ASTM 1785	Pressure	Schedule 40	1/2-16 inch
ASTM 1785	Pressure	Schedule 80	1/2-16 inch
ASTM D2241	Pressure	SDR 41-100 psi	4-16 inch
ASTM D2241	Pressure	SDR 32.5-125psi	3-16 inch
ASTM D2241	Pressure	SDR 26-160 psi	1-16 inch
ASTM D2241	Pressure	SDR 21-200 psi	3/4-16 inch
ASTM D2241	Pressure	SDR 17-250 psi	3/4-16 inch
ASTM D2241	Pressure	SDR 13.5-315 psi	1/2-6 inch

Polyvinyl Chloride Pipes System For Pressure Water, Drainage \& Sewerage, Electrical \& Communication

Conduit Pipes for Electrical System

SPECIFICATION	RATING	SIZES	
BS 4607	APPLICATION	Duct	$3 / 4-1 \mathrm{l}$
DIN 8062	Conduit	Inch	
BS 3506	Non-Pressure	Class O	$75-630 \mathrm{~mm}$
NEMA - TC2 Pipes	Non-Pressure	Duct	$1 / 2-10 \mathrm{Inch}$
NEMA - TC3 Fittings	Non-Pressure	Duct	$1 / 2-8$ Inch
NEMA- TC8 \& TC6 Pipes	Non-Pressure	Duct	$1 / 2-6$ Inch
NEMA - TC9 Fittings	Non-Pressure	Conduit	$2-6$ Inch
SSA 255 / 1981 Pipes	Non-Pressure	Conduit	$16-32 \mathrm{~mm}$
SSA 255 / 1981 Fittings	Non-Pressure	Conduit	$16-32 \mathrm{~mm}$
BSEN-61386 Pipes	Non-Pressure	Conduit	$20-50 \mathrm{~mm}$
BSEN-61386 Fittings	Non-Pressure		$20-50 \mathrm{~mm}$

Duct Pipes for Telecommunication System

SPECIFICATION	APPLICATION	RATING	SIZES
Ooredoo	Telephone Duct	Duct $54 / 56$	$2-31 / 2$ Inch

Duct Pipes System According to QCS

SPECIFICATION	APPLICATION	RATING	SIZES
QCS	General Purpose Duct	Duct	$56-315 \mathrm{~mm}$

uPVC Non Pressure Pipes for Drainage \& Sewerage

SPECIFICATION	APPLICATION	RATING	SIZES
BS 5255	Waste	Drainage	$11 / 4-2 \mathrm{inch}$
BS 4514	Soil	Drainage	$3,4 \& 6 \mathrm{inch}$
BS 4660	Underground	Drainage	8 inch
BS 5481	Gravity Sewer	Drainage	$8,10,12 \& 16 \mathrm{inch}$
EN 1329	Soil \& Waste	Drainage	$110-400 \mathrm{~mm}$
EN 1401	Underground Drain	Drainage	$110-400 \mathrm{~mm}$
DN 19534	Gravity Sewer	Drainage	$110-630 \mathrm{~mm}$

uPVC Pressure
 Pipes System Imperial \& Metric Range

ASTM D1785•ASTM D2241•BS 3505
EN 1452-2:2009•ISO 161/1•DIN 8062:2009

Pressure Pipes System

We produce a wide range of UPVC Pressure Pipes to most of the major international standards and dimensions of Metric and Imperial. The pipes are made from 100% virgin UPVC resin with necessary additives and chemical so that the pipes meet or exceed the rigorous hydrostatic requirements of the standards. The pipes are produced in a range of colors such as grey, white, blue, purple and carry full printing and identification at 1 m intervals according to the standard requirements.

Pipes can be supplied with integral solvent weld joints a long with solvent cement or rubber ring joints using high performance EPDM seals to EN681. The joints exceed the pressure rating of the pipe and can therefore cover all the applications where the pipes are installed.

All pipes produced under quality assurance system and are specially designed to meet the harsh climate condition of the Gulf region, we place great importance on quality, reliability and economy. Strict in house quality control is backed by testing through independent laboratories of international repute to certify quality of pipes. For export requirements pipes can be supplied in 5.8 m (19ft.) length so they can be loaded in container without damaging socket. We place focus on great customer satisfaction through quality products.

Mechanical and Physical Properties

Material Strength	MRS $\geq 25 \mathrm{MPa}$	EN921
Impact Resistance	TIR $\geq 10 \%$	EN744
Tensile Strength	MIN $45 \mathrm{~N} / \mathrm{mm}^{2}$	ISO 6259
Resistance to internal Pressure $20^{\circ} \mathrm{C}$	$42 \mathrm{Mpa} / 1 \mathrm{hour}$	EN921
Vicat Softening	$\geq 80^{\circ} \mathrm{C}$	EN721
Logitudinal Reversion	Maximum 5%	EN743
Dichloromethane Acid Resistance	No Attack	EN580
Socket strength dia $\leq 90 \mathrm{~mm}$	$4.2 \times[P N]$	EN921
Socket strength dia $\geq 90 \mathrm{~mm}$	$3.6 \times[P N]$	EN921

Pressure Derating Factors ($\mathbf{2 0 - 4 5}{ }^{\circ} \mathrm{C}$) EN1452

Temp C	Derating Factor
20°	1.00
25°	1.00
30°	0.90
35°	0.80
40°	0.70
45°	0.60

Thermoplastics Materials loose their strength to Pressure \& Tension with increasing temperature. The above table can be used as a guide to common thermoplastics and their derated strength with temperature, and to determine the maximum working pressure rating of the pipes at the elevated temperature choosing.

uPVC Pressure Pipes System
Metric Range

DIN 8061/62 EN ISO 1452, SSA 14 \& 15/1998, ISO 161/1

Nominal Outside Dimeter mm .	Nominal (minimum) Wall Thickness									
	Nominal Pressure PN based on safety factor (SF) = 2.5									
	CLASS-1		CLASS-2		CLASS-3		CLASS-4		CLASS-5	
	Series 62.5 SDR 126 PN 2 WT	Nominal Weight (Kg/m)	Series 25 SDR 51 PN 4	Nomina Weight (Kg/m)	$\begin{gathered} \text { Series } 16.7 \\ \text { SDR } 34.4 \\ \text { PN } 6 \\ \text { WT } \end{gathered}$	Nominal Weight (Kg/m)	Series 10 SDR 21 PN 10	Nominal Weight (Kg/m)	Series 6.3 SDR 13.6 PN 16	Nominal Weight (Kg/m)
20	-	-	-	-	-	-	-	-	1.50	0.137
25	-	-	-	-	-	-	1.50	0.174	1.90	0.212
32	-	-	-	-	-	-	1.80	0.264	2.40	0.342
40	-	-	-	-	1.80	0.334	1.90	0.35	3.00	0.525
50	-	-	-	-	1.80	0.422	2.40	0.552	3.70	0.809
63	-	-	-	-	1.90	0.562	3.00	0.854	4.70	1.29
75**	-	-	1.80	0.642	2.20	0.782	3.60	1.22	5.60	1.82
90**	-	-	1.80	0.774	2.70	1.130	4.30	1.75	6.70	2.61
110**	1.80	0.95	2.20	1.160	3.20	1.640	5.30	2.61	8.20	3.90
125**	1.80	1.08	2.50	1.48	3.70	2.130	6.00	3.34	9.30	5.01
140	1.80	1.21	2.80	1.48	4.10	2.650	6.70	4.18	10.40	6.27
160**	1.80	1.39	3.20	2.41	5.30	3.440	7.70	5.47	11.80	8.17
200**	1.80	1.74	4.00	3.70	5.90	5.370	9.60	8.51	14.90	12.80
225**	1.80	1.96	4.50	4.70	6.60	6.760	10.80	10.80	16.70	16.10
250**	2.00	2.40	4.90	5.65	7.30	8.310	11.90	13.20	18.60	19.90
280*	2.30	3.11	5.50	7.11	8.20	10.40	13.40	16.60	20.80	24.90
315*	2.50	3.78	6.20	9.02	9.20	13.20	15.00	20.90	23.40	31.50
355*	2.90	4.88	7.00	11.40	10.40	16.70	16.90	26.50	26.80	39.90
400*	3.20	6.10	7.90	14.50	11.70	21.10	19.10	33.70	29.70	50.80
450*	3.60	7.65	8.90	18.30	13.20	26.80	21.50	42.70	-	-
500*	4.00	9.38	9.80	22.40	14.60	32.90	23.90	52.60	-	-
630*	5.00	14.70	12.40	35.70	18.40	52.20	30.00	83.20	-	-

**Available in Rubber Ring
*Resale Product
Note: DIN 8062; 2009 Superseded EN ISO 1452-2: 2009

uPVC Pressure Pipes System For Water Distribution

BS 3505

Nominal Size	Outside Diameter		Wall Thickness								
			$\begin{gathered} \hline \text { CLASSC } \\ \text { (9 Bar) } \end{gathered}$			$\begin{aligned} & \text { CLASSD } \\ & \text { (12 Bar) } \end{aligned}$			$\begin{aligned} & \text { CLASSE } \\ & \text { (15 Bar) } \end{aligned}$		
Inch	Min. mm	Max. mm	Min. mm	Max. mm	Nominal weight Kg / m	Min. mm	Max. mm	Nominal weight Kg / m	Min. mm	Max. mm	Nominal weight Kg / m
1/2	21.20	21.50	-	-	-	-	-	-	1.70	2.10	0.158
$3 / 4$	26.60	26.90	-	-	-	-	-	-	1.90	2.50	0.225
1	33.40	33.70	-	-	-	-	-	-	2.20	2.70	0.350
$11 / 4$	42.10	42.40	-	-	-	2.20	2.70	0.434	2.70	3.20	0.508
$11 / 2$	48.10	48.40	-	-	-	2.50	3.00	0.534	3.10	3.70	0.667
2*	60.20	60.50	2.50	3.00	0.683	3.10	3.70	0.850	3.90	4.50	1.042
$21 / 2$	75.00	75.30	3.00	3.50	-	3.90	4.50	-	4.80	5.50	-
3*	88.70	89.10	3.50	4.10	1.417	4.60	5.30	1.834	5.70	6.60	2.250
4*	114.10	114.50	4.50	5.20	2.350	6.00	6.90	3.050	7.30	8.40	3.700
5	140.00	140.40	5.50	6.40	-	7.30	8.40	-	9.00	10.40	-
$6 *$	168.00	168.50	6.60	7.60	5.084	8.80	10.20	6.72	10.80	12.50	8.143
8*	218.80	219.40	7.80	9.00	7.086	10.30	11.90	10.17	12.60	14.50	12.28
10*	272.60	273.40	9.70	11.20	-	12.80	14.80	-	15.70	18.10	-
12*	323.40	324.30	11.50	13.30	-	15.20	17.50	-	18.70	21.60	-
14	355.00	356.00	12.60	14.50	-	16.70	19.20	-	20.50	23.60	-
16^{*}	405.90	406.90	14.50	16.70	-	19.00	21.90	-	23.40	27.00	-

*Available in Rubber Ring

BS EN 1452-2: 2009 Inch Series

Nominal Size	Outside Diameter		Nominal Wall Thickness								
			PN 9			PN 12			PN 15		
Inch	Min. mm	Max. mm	Min. mm	Max. mm	Nominal weight Kg / m	Min. mm	Max. mm	Nominal weight kg / m	Min. mm	Max. mm	$\begin{aligned} & \text { Nominal } \\ & \text { weight } \\ & \mathrm{Kg} / \mathrm{m} \end{aligned}$
1/2	21.20	21.50	-	-	-	-	-	-	1.70	2.10	-
$3 / 4$	26.60	26.90	-	-	-	-	-	-	1.90	2.50	-
1	33.40	33.70	-	-	-	-	-	-	2.20	2.80	0.350
$11 / 4$	42.10	42.40	-	-	-	2.20	2.70	0.434	2.70	3.30	0.508
$11 / 2$	48.10	48.40	-	-	-	2.50	3.00	0.534	3.10	3.70	0.667
2^{*}	60.20	60.50	2.50	3.00	0.683	3.10	3.70	0.850	3.90	4.50	1.042
3*	88.70	89.10	3.50	4.10	1.417	4.60	5.30	2.250	5.70	6.60	2.250
4*	114.10	114.50	4.50	5.20	2.350	6.00	6.90	3.700	7.30	8.40	3.700
$6 *$	168.00	168.50	6.60	7.60	5.084	8.80	10.20	8.143	10.80	12.50	8.143
8*	218.80	219.40	7.80	9.00	7.086	10.30	11.90	-	12.60	14.50	12.28
10*	272.60	273.40	9.70	11.20	-	12.80	14.80	-	15.70	18.10	-
12*	323.40	324.30	11.50	13.30	-	15.20	17.50	-	18.70	21.60	-
16^{*}	405.90	406.90	14.50	16.70	-	19.00	21.90	-	23.40	27.00	-

[^0]uPVC Pressure Pipes System
American Standard

uPVC Pressure Pipes System Cold Potable Water

ASTM D 1785

Schedule 40/Schedule 80

Nominal Pipe Size inch	Outside Diameter mm	Wall Thickness			
		Schedule 40 mm	Nominal weight Kg $/ \mathrm{m}$	Schedule 80 mm	Nominal weight Kg $/ \mathrm{m}$
$1 / 2$	21.30	2.80	0.248	3.70	0.309
$3 / 4$	26.70	2.90	0.329	3.90	0.418
1	33.40	3.40	0.483	4.50	0.614
$11 / 4$	42.20	3.60	0.652	4.80	0.850
$11 / 2$	48.30	3.70	0.779	5.10	1.030
2	60.30	3.90	1.040	5.50	1.430
$21 / 2$	73.00	5.20	1.650	7.00	2.180
3	88.90	5.50	2.160	7.60	2.910
4	114.30	6.00	3.070	8.60	4.260
6	168.30	7.10	5.410	11.00	8.130
8	219.10	8.20	8.143	12.70	12.400
10	273.10	9.30	-	1.10	-
12	323.90	10.30	-	17.50	-
14	355.60	11.10	-	19.10	-
16	406.40	12.70	-	21.40	-

ASTM D 2241
Class 100/ Class 125 / Class 160 / Class 200 / Class 315

uPVC Pressure Pipes System Metric Range

PERFORATED AND SLOTTED uPVC PIPES

Perforated or Slotted uPVC pipes are manufactured upon request depending on the size and class of the pipes below figures given a general configuration which may vary for clients requirements.

Perforated Pipes:

(Staggered rows)

4 Rows

(Straight rows)

Wall Thickness	75 mm to 500 mm
Angular pitch of holes	40° for 3 or 4 rows $40^{\circ}, 80^{\circ}$ or 120° for 2 rows Longitudinal pitch of holes (LP) Hole Diameter Number of rows to 200 mm
1 to 6	

Slotted Pipes:

Slotted pipes are produced according to RDA requirements and for use in lowering the underground water table.

(Staggered Slots)

Slot length	Depend on the size
Slot width	$1,1.1 / 2^{\prime \prime}$ 2 mm \& 3 mm
No . of Row	$4,6 \& 8$ (but according to the size)
Angular pitch	Recommended by us

For further details please refer to Marketing Technical Sales Department.

Duct and Conduit

For use in electrical telephone, communication and other duct system

Duct and Conduit According to UL 651 Standard

We produces a range of PVC schedule 40 ducts in size $1 / 2^{\prime \prime}$ to 8 " that are in accordance with NEMA TC-2A standard and listed to UL 651.

The conduits are suitable for above or below ground installations and made from 100% virgin PVC resin.
The ducts meet and exceed all the mechanical and performance requirement of both the NEMA TC2 and UL 651 standards.

General Properties

- Fully compliant to NEMA TC-2 and UL 651.
- Rated for use $90^{\circ} \mathrm{C}$ conductors.
- Ultraviolet protected.
- High Impact and deformation properties.
- Solvent cement joints with deep sockets.
- Can be supplied in various lengths such as $3 \mathrm{~m}, 6 \mathrm{~m}, 2.9 \mathrm{~m}$, 5.8 m (standard leg lengths $3 \mathrm{~m}, 6 \mathrm{~m}$).
- Smooth solid wall.
- Produced According to ISO 9001:2008 Quality Assurance System.

MECHANICAL PROPERTIES

	ASTM	TYPICAL VALUE
Specific Gravity	D792	$1.4-1.7$
Tensile Strength (psi) @ 73.4 ${ }^{\circ} \mathrm{F}$	D638	5,000
Izod impact - ft Ibs/in of notch	D256	$0.65-1.50$
Flexural Strength (psi)	D790	12,500
Comprehensive Strength (psi)	D695	9,000
Hardness (Durometer D)	D2240	95

ELECTRICAL PROPERTIES

	ASTM	TYPICAL VALUE
Dielectric Strength - volts/mil Dielectric Constant	D149	1,100
60 CPS @ $30{ }^{\circ} \mathrm{C}$	D150	4.00
Power Factor 60 CPS @ $30{ }^{\circ} \mathrm{C}$	D150	1.93

THERMAL PROPERTIES

	ASTM	TYPICAL VALUE
Coefficient of Thermal Expansion - in/in ${ }^{\circ} \mathrm{C}$	D696	5.13×10^{-5}
Coefficient of Thermal Expansion - in/in ${ }^{\circ} \mathrm{F}$	D696	3.0×10^{-5}
Deflection Temp.${ }^{\circ}$ F Under		
Load @ 264 psi		

FIRE RESISTANCE PROPERTIES

	ASTM	TYPICAL VALUE
Fire Resistance	-	Self Extinguishing
Flame Spread	E162	10
Smoke Development	E84	330

According to NEMA \& UL 651 Standards

NEMA TC-2 Pipes System

PVC Electric Plastic Tubing (EPT) \& Conduit (EPC - 40 \& EPC - 80)

Dimensions of Electrical Plastic Tubing

Nominal 1 IN isize inch	Outside Diameter	EPT-A -PVC		EPC-40-PVC		EPC-80-PVC	
		Wall Thickness	N.Weight Kg / m	Wall Thickness	N.Weight Kg / m	Wall Thickness	N.Weight Kg / m
	mm	mm		mm		mm	
$1 / 2 "$	21.34	1.52	0.155	2.77	0.248	3.73	0.309
$3 / 4$ "	26.67	1.52	0.197	2.87	0.329	3.91	0.418
$1 "$	33.40	1.52	0.250	3.38	0.483	4.55	0.614
$11 / 4 "$	42.15	1.78	0.365	3.56	0.652	4.85	0.850
$11 / 2 "$	48.26	2.03	0.468	3.68	0.779	5.08	1.030
$2 "$	60.32	2.54	0.717	3.91	1.04	5.54	1.430
$21 / 2^{\prime \prime}$	73.02	2.79	0.952	5.16	1.65	7.01	2.180
$3 "$	88.90	3.18	1.310	5.49	2.160	7.62	2.900
4"	114.30	3.81	2.000	6.02	3.070	8.56	4.260
5"	141.30	-	-	6.55	4.17	9.52	5.910
$6 "$	168.28	-	-	7.11	5.410	10.97	8.130
8"	219.07	-	-	8.18	8.143	12.70	12.400

EPT-A-PVC Electrical Plastic Tubing for encasement in concrete, EPC 40 Electrical plastic conduit for normal duty application \& EPC 80 Electrical Plastic Conduit for heavy-duty application.

NEMA TC-3 FITTINGS using NEMA TC-2 PIPES

PVC FITTINGS FOR USE WITH RIGID PVC CONDUIT AND TUBING
Coupling and Bell End

Duct and Conduit
 According to NEMA \& UL 651
 Standards

NEMA TC-3 FITTINGS Using NEMA TC-2 PIPES

Long Radius Bend

TC-3 Register coupling

TC-3 Repair coupling

TC-3 Long Radius Bend

TC-3 Bell End

NEMA TC-8 \& TC-6 PIPES
PVC PLASTIC UTILITIES DUCT FOR UNDERGROUND INSTRUCTIONS
Dimensions of Underground Utilities Duct

Nominal Pipe size Inch	Average Outside Diameter	$\begin{gathered} \text { TC6 } \\ \text { TYPE EB-20 } \end{gathered}$	Weight (Kg)/Mtr	TC8 TYPE EB-35	Weight (Kg)/Mtr	$\begin{gathered} \text { TC6 } \\ \text { TYPE DB-60 } \end{gathered}$	Weight (Kg)/Mtr	$\begin{gathered} \text { TC8 } \\ \text { TYPE DB-100 } \end{gathered}$	Weight (Kg)/Mtr	$\begin{gathered} \text { TC8 } \\ \text { TYPE DB-120 } \end{gathered}$	Weight (Kg)/Mtr
		Wall Thickness									
	mm	mm									
$1 "$	33.40	-	-	-		-	-	-		1.52	0.251
$11 / 2^{\prime \prime}$	48.26	-	-	-		-	-	-	-	1.52	0.369
2 "	60.32	-	0.465	1.52	0.465	1.651	0.465	-		1.96	0.576
3"	88.90	1.70	0.703	1.93	0.847	2.54	1.000	2.84	1.160	3.00	1.250
4"	114.30	2.26	1.170	2.54	1.390	3.327	1.650	3.68	1.930	3.91	2.050
5"	141.30	2.84	1.171	3.20	2.090	4.165	2.500	4.55	2.940	4.85	3.120
$6 "$	168.28	3.42	2.530	3.86	3.020	4.978	3.570	5.41	4.170	5.77	4.420

Note : EB for Encased Burial in Concrete \& DB for Direct Burial without Concrete

NEMA TC-9 FITTINGS using NEMA TC-6 \& TC-8 PIPES

FITTINGS FOR PVC PLASTIC UTILITIES DUCT FOR UNDERGROUND INSTALLATION
Repair Coupling

Register Coupling

Socket Bell End

Telephone Duct QNBN

British Standard Telephone Duct QNBN (ooredoo)

Duct No.	OutsideDiameter(mm)	InsideDiameter(mm)	SocketLength (mm)	U_jj Thickness(mm) $^{\text {54D }}$
96.50	90.00	100.00	3.25	
56D	56.50	50.00	70.00	3.25

- All the Ducts \&the Bendsare Black.
- All the Ducts \& the Bendsare SolventWeldType.

BS 3506

Nominal Size	Outside Diameter		Wall Thickness			Weight (Kg)/Mt
			(non pressure)			
			Average Value			
inch	$\begin{gathered} \mathrm{Min} \\ \mathrm{~mm} . \end{gathered}$	Max mm.	mm	$\begin{aligned} & \mathrm{Min} \\ & \mathrm{~mm} . \end{aligned}$	$\begin{aligned} & \mathrm{Max} \\ & \mathrm{~mm} . \end{aligned}$	
$11 / 2$	48.10	48.40	2.02	1.80	2.20	0.40
2	60.20	60.50	2.20	1.80	2.20	1.50
$21 / 2$	75.00	75.30	2.20	1.80	2.20	1.63
3	88.70	89.10	2.20	1.80	2.20	0.75
4	114.10	114.50	2.80	2.30	2.80	1.23
6	168.00	168.50	3.70	3.10	3.70	2.41
8	218.80	219.40	3.70	3.10	3.70	3.16
10	272.60	273.40	3.70	3.10	3.70	-
12	323.40	324.30	3.70	3.10	3.70	-
16	405.90	406.90	4.80	4.10	4.80	-

Duct Pipes System
According to QCS

Duct Pipes System According to QCS

Nominal Size(inch)	OutsideDiameter(mm)	Wall Thickness(mm)	Standard Length(meters)
2^{\prime}	55.75	2.00	4.00
$2^{1 / 2}{ }^{\prime}$	75.30	2.60	4.00
3^{\prime}	82.40	2.20	4.00
4^{\prime}	110.00	2.40	5.80
4^{\prime}	110.00	3.20	5.80
5^{\prime}	140.30	2.60	5.80
5^{\prime}	140.30	3.20	5.80
5^{\prime}	140.30	3.50	5.80
6^{\prime}	160.00	2.60	5.80
6^{\prime}	160.00	3.60	5.80
6^{\prime}	160.00	4.70	5.80
8^{\prime}	200.00	4.00	5.80
8^{\prime}	200.00	4.90	5.80
$10^{\prime \prime}$	250.00	4.90	5.80
$10^{\prime \prime}$	250.00	6.10	5.80
$12^{\prime \prime}$	315.00	7.70	5.80
$12^{\prime \prime}$	315.00	9.20	5.80

- Brown, Graydlack.
- All pipes are solvent

(BS-EN-61386)PIPES

CONDUIT SYSTEM FOR CABLE MANAGEMENT

As per British standards BS-EN-6099 and BS-EN-50086-2 replaced by BS-EN-61386-21-2004

Nominal size	Light Gauge			Medium Gauge			Heavy Gauge		
	Wall Thickness mm	Minimum Inside Diameter mm	Weight $($ Kg)/Mtr	Wall Thickness mm	Minimum Inside Diameter mm	Weight $($ Kg $) /$ Mtr	Wall Thickness mm	Minimum Inside Diameter mm	Weight $($ Kg $) /$ Mtr
20	1.30	17.40	0.120	1.55	16.90	0.140	2.10	15.80	0.180
25	1.45	22.10	0.165	1.80	21.40	0.200	2.20	20.60	0.240
32	1.70	28.60	0.245	2.10	27.80	0.296	2.70	26.60	0.370
38	2.00	34.00	0.338	2.25	33.50	0.376	2.75	32.50	0.452
40	2.10	35.80	0.352	2.30	35.40	0.406	2.80	34.40	0.485
50	2.45	45.10	0.540	2.85	44.30	0.622	3.40	43.20	0.707

*Dimensions in millimeters

Conduit are offered in 3 or 2.9 meter long in black or white color.

BRITISH STANDARD (BS-EN-61386)FITTINGS

Long Radius Bend

Nominal size	Outside Diameter of Bend (d1)		Minimum Inside Diameter of Bend (d2)	Inside Diameter of Collar (d3)	R	Weight (Kg)/Mtr
	Dimension	Tolerance				
20	20	± 0.022	16.90	16.90	65	0.140
25	25	± 0.022	21.40	21.40	90	0.200
32	32	± 0.025	27.80	27.80	125	0.296
38	38	± 0.028	33.50	33.50	159	0.376
40	40	± 0.030	36.40	36.40	180	0.406
50	50	± 0.030	44.30	44.30	240	0.622

[^1]
Drainage
 Pipes System
 British Standard

BS EN $1329 \cdot$ BS EN $1401 \cdot$ BS $5255 \cdot$ BS 4514 BS 4660 • BS 5481 • DIN 19534

UPVC Drainage
 Pipes System

Drainage Pipes System

We produce a range of UPVC pipes for above and below ground made of 100% virgin UPVC and supply full range of fittings in both solvent weld and rubber ring joint for all sizes in cooperation with other pipes \& fittings manufacturer.

The pipes are produced in all the major international standards ie: European Standards BS EN $1401, B S E N$ 1329, as well.

General Properties of our Drainage Pipes

- Fully compliant to the main international Standards.
- Tough, impact resistant.
- EPDM rubber rings following EW681 Standard.
- Can be supplied in Solvent Weld or Rubber Ring Joint (from 3" and above).
- Different Length available $3 \mathrm{~m}, 2.9 \mathrm{~m}, 6 \mathrm{~m}, 5.8 \mathrm{~m}$. Other length on request.
- Distinctive colour coded system (ie Light Gray, Brown, White, etc.) with full printing at 1 m intervals.
- Superior chemical and acid resistance.
- Outstanding mechanical properties of tensile strength and resistance to pressure.

BS 5255, BS 4514, BS 4660, BS 5481

Code BS 5255 WASTE	Nominal OD mm(inch)	Minimum OD mm	Minimum Wall Thickness mm	Colour	Weight (Kg)/Mt
DR-125 DR-15 DR-2(50*) DR-2(55)	$\begin{aligned} & 36\left(1 \frac{1}{4}\right)^{\prime \prime} \\ & 43\left(1 \frac{1}{2}\right)^{\prime \prime} \\ & 50\left(2^{\prime \prime}\right) \\ & 56\left(2^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 36.15 \\ & 42.75 \\ & 50.00 \\ & 55.75 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.90 \\ & 2.00 \\ & 2.00 \end{aligned}$	WH/LG WH/LG WH/LG WH/LG	$\begin{aligned} & 0.345 \\ & 0.427 \\ & 0.502 \\ & 0.586 \end{aligned}$
BS 4514 SOIL					
DR-3/LG DR-4/LG DR-6/LG	$\begin{aligned} & 82\left(3^{\prime \prime}\right) \\ & 110\left(4^{\prime \prime}\right) \\ & 160\left(6^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 82.00 \\ & 110.00 \\ & 160.00 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 3.20 \\ & 3.20 \end{aligned}$	LG	$\begin{aligned} & 1.20 \\ & 1.68 \\ & 2.41 \end{aligned}$
BS 4660 UNDERGROUND					
$\begin{aligned} & \text { DR-4/BR } \\ & \text { DR-6/BR } \end{aligned}$	$\begin{aligned} & 110\left(4^{\prime \prime}\right) \\ & 160\left(6^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 110.00 \\ & 160.00 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 4.10 \end{aligned}$	BR	$\begin{aligned} & 1.680 \\ & 3.030 \end{aligned}$
BS 5481 GRAVITY SEWER					
DR-8/BR DR-10/BR DR-12/BR DR-16/BR	$\begin{aligned} & 200\left(8^{\prime \prime}\right) \\ & 250\left(10^{\prime \prime}\right) \\ & 315\left(12^{\prime \prime}\right) \\ & 400\left(16^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 200.00 \\ & 250.00 \\ & 315.00 \\ & 400.00 \end{aligned}$	$\begin{aligned} & 4.90 \\ & 6.10 \\ & 7.70 \\ & 9.80 \end{aligned}$	BR	$\begin{gathered} 4.679 \\ 7.296 \\ 11.110 \\ 17.800 \end{gathered}$

UPVC Drainage
 Pipes System

The main features of drainage Pipes \& Fittings are:

- Strong and resistance to impact.
- Easy to install and compatible with National Plastic Drainage pipe.
- Fully compliant to the BS standards.
- Resistant to a wide range of chemical / fluids.
. Smooth bore to give excellent flow characteristics.

Raw Material
The Raw material is 100% virgin PVC-U

Colour

BS EN 1329-1:2000 v Light Gray
BS EN 1401-1:2000v Orange Brown
Chamfering
A 15° chamfer is applied to all spigot ends for rubber ring pipe.

Length
Pipes are normally supplied in 6 m overall length.
Pipes can also be supplied in 5.8 m overall length to fit Inside containers.

Sizes 36, 43 and 56 mm are supplied in 4 m overall length with plain ends.

UPVC Drainage Pipes System British Standard

Standards	BS EN 1329 / BS 5255 - Light Gray;
	BS 4514 - Light Gray;
	BS EN 1401 / BS 4660 - Brown
Material	100\% uPVC
Joints	Female solvent weld sockets
Temp Range	$: 0^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ (for intermittent discharge)
Tensile streng	: Min. $45 \mathrm{~N} / \mathrm{mm}^{2}$

Characteristics of Pipes BS EN1329,BS EN1401

Compound Characteristics

The compounds used in our pipes conforming to the standards have the following Characteristics.

Modulus of Elasticity	$=\mathrm{E}(1 \mathrm{~min}) \geq 3000 \mathrm{mPa}$
Average Density	$=1.4 \mathrm{~g} / \mathrm{cm}^{3}$
Average Coefficient of	
Linear Thermal Expansion	$=0.8 \mathrm{~mm} / \mathrm{mk}^{2}$
Thermal Conductivity	$=0.16 \mathrm{WK}^{-1} \mathrm{~m}^{-1}$
Surface Resistance	$=>10^{12} \Omega$

UPVC Drainage

Pipes System
Mechanical and Physical Characteristics

Characteristics	Requirement	Test Method
Impact Resistance	TIR $\leq 10 \%$	EN 744
Vicat Softening	$\geq 79^{\circ} \mathrm{C}$	EN 727
Longitudinal Reversion	No attack	EN 743
Dichloromethane Acid Resistance	No leakage	EN 580
Water Tightness of Rubber Ring Joint	No leakage	EN 1277
Elevated Temp. Cycling	1.90 days ≥ 1.3 bar	EN 1055
Long Term Performance of TPE Seals	2.100 years ≥ 0.6 bar	prEN 1989
Resistance to internal Pressure	No failure during the test	EN 921

BS EN 1329-1:2000

Nominal Size DN/OD	Nominal OD	Mean Outside Diameter		Wall Thickness Application Area "B"	
		(dem,min)	(dem,max)	(e,min)	(e,max)
32	32	32.00	32.20	3.00	3.50
36 (1 1/4")	36	36.20	36.50	3.00	3.50
40	40	40.00	40.20	3.00	3.50
43 (1/1/2")	43	42.80	43.10	3.00	3.50
50	50	50.00	50.20	3.00	3.50
56 (2")	56	55.80	56.10	3.00	3.50
75	75	75.00	75.30	3.00	3.50
82 (3")	82	82.00	82.30	3.00	3.50
110 (4")	110	110.00	110.30	3.20	3.80
160 (6") В	160	160.00	160.40	3.20	3.80
160 (6") BD	160	160.00	160.40	4.00	4.60
200 (8")B	200	200.00	200.50	3.90	4.50
200 (8")BD	200	200.00	200.50	4.90	5.60
250 (10") B	250	250.00	250.50	4.90	5.60
250 (10")BD	250	250.00	250.50	6.20	7.10
315 (12")B	315	315.00	315.60	6.20	7.10
315 (12")BD	315	315.00	315.60	7.70	8.70

*Dimensions in millimeters
$N: B$ Application area " B " for components intended to be used above ground inside the building or outside building fixed to a wall
BS EN 1401-1:1998

Nominal Size DN/OD	Nominal Size OD	Mean Outside Diameter		Wall Thickness SN2, SDR 51			Wall Thickness SN4, SDR 41			Wall Thickness SN8, SDR 34		
		(e,min)	(e, max)	(e,min)	(e,max)	$\begin{gathered} \hline \text { Weight } \\ (\mathrm{Kg}) / \mathrm{Mtr} \end{gathered}$	(e,min)	(e,max)	Weight (Kg)/Mtr	(e,min)	(e,max)	$\begin{aligned} & \text { Weight } \\ & (\mathrm{Kg}) / \mathrm{Mtr} \end{aligned}$
110 (4")	110	110.00	110.30	-	-	-	3.20	3.80	1.680	3.20	3.80	2.210
160 (6")	160	160.00	160.40	3.20	3.80	2.41	4.00	4.60	3.030	4.70	5.40	3.580
200 (8")	200	200.00	200.50	3.90	4.50	3.62	4.90	5.60	4.679	5.90	6.70	5.600
250 (10")	250	250.00	250.50	4.90	5.60	5.65	6.20	7.10	7.296	7.30	8.30	8.600
315 (10")	315	315.00	315.60	6.20	7.10	9.02	7.70	8.70	11.110	9.20	10.40	13.650
400 (16")	400	400.00	400.70	7.90	8.90	14.50	9.80	11.00	17.800	11.70	13.10	21.680

[^2]$\mathrm{N}: \mathrm{B}$ For Outside the building structure application area "U" SN2 $=$ Ring Stiffness of $2 \mathrm{KN} / \mathrm{m}^{2} \mathrm{SN} 4=$ Ring stiffness of $4 \mathrm{KN} / \mathrm{m}^{2}$

UPVC Drainage Pipes System DIN Standard

uPVC PIPES ACCORDING TO DIN 19534

Nominal Diameter (mm)	Outside Diameter (mm)	Wall Thickness	Weight (Kg)/Mtr
100	110	3.00	1.63
125	125	3.00	1.83
150	160	3.60	2.65
200	200	4.50	4.12
250	250	6.10	7.00
300	315	7.70	11.11
400	400	9.80	17.80
500	500	12.20	27.65
600	630	15.40	41.87

uPVC PIPES ACCORDING TO DIN 19531

Nominal Pipe Size (mm)	Outside diameter min (mm)	Wall Thickness min (mm)	Weight (Kg)/Mtr
40	40	1.80	0.334
50	50	1.80	0.422
75	75	1.80	0.642
110	110	2.20	1.160
125	125	2.50	1.480
160	160	3.20	2.410

HANDLING AND SUPPORT

HANDLING:

- The pipe should be handled with reasonable care to avoid breakage or damage.
- The pipe should never be pushed or thrown from a delivery truck.
- The pipe should be protected from direct sunlight at all times.
- The pipe should be kept away from sharp objects (rocks, irons...etc.) to prevent damage.
- Lifting of pipes requires extra care as the extended pipe weight can cause cracking or breakage.

STORAGE:

- The pipe should be protected from the sun. This will prevent the effects of ultraviolet-rays and heat build ups.
- If the pipe is stored in racks, it should be continuously supported along its length.
- Pipes should be stored inside and should be attached to prevent damage.
- When pipes are stacked, ensure that the weight of upper units does not cause deformation to pipes in the bottom of the stack.
- Pipes and fittings should always be protected from dirt and foreign matter.

INSTALLATION

PVC Handling \& Installation Manual

INSTALLATION

GENERAL:

UPVC pipes do not fracture under load but can be liable to deformation. The extent of this deformation depends largely upon the compaction of the immediate surrounding fill. This fill should depends largely upon the extend to the trench width in normal situations.

The external backfill and surcharge loads imposed on a pipe of rigid material, (such as vitrified clay, concrete, asbestos cement or cast iron) are supported mainly by the resistance of the pipe to circumferential bending. On the other hand, UPVC pipes being relatively flexible, offer less resistance to circumferential deformation and rely partly on external support to resist deformation. Therefore, it is of primary importance for UPVC pipes that fill material, particularly the bedding and side fill, should be properly compacted in order to prevent excessive deformation.

It is desirable that vertical deformation should be limited to 5% on completion of the backfilling, which can only be achieved by proper composition and compaction of the backfill. It is essential to avoid high stress concentrations and sharp objects such as large stones or flints which should not be allowed to come into contact with the surface of the pipe.

The flexible nature of UPVC pipes helps them to accommodate deformations resulting from ground movement or from other differential settlement under normal circumstances.

When a vertical load is imposed on the UPVC pipes the resulting horizontal force is transmitted to the undisturbed trench wall by the side fill. Any deflection of the pipe will cease when the horizontal reaction of the side fill corresponds to the transmitted vertical load and a state or equilibrium is reached.

Except in special circumstances, e.g. at very shallow cover depths or where it is necessary to safeguard the foundations of existing structures, the use of concrete for bedding or surrounding the pipes is unnecessary.

PIPE LAYING:

Normally, drainage pipe work is laid in straight lines. However, in special circumstances, it may something be acceptable to the jointed pipes to a slight curve to avoid an obstacle, or to follow the curvature of a street. If this is done and joints are of the push-fit type, care has to be taken not to spring the pipe work too sharp. Otherwise, a curve or the joints may be overstrained and cause a subsequent failure. Straining of the joints can be minimized by firmly backfilling a short length of pipe.

The pipe should be anchored in this position by further backfilling before the next joint is made and the process repeated as necessary. The trench may need to be widened on the curve to accommodate the pipe in its straight position. It is essential that the jointing is always carried out in the straight position.

EXCAVATION:

The trench should not be opened too long in advance of pipe laying and should be backfilled as soon as possible. It is essential to ensure that the sides of the trenches are adequately supported

The width of the trench within any timbering should be as narrow as is practicable, but not less than the outside diameter of the pipe plus sufficient extra width (usually about 150 mm) on each side of the pipe to provide access for making the joints, as well as placing and compacting side fill.

PIPE BEDDING:

The maximum and minimum recommended depths are illustrated in the below construction details:

PROTECTION OF UPVC PIPES:

If the UPVC pipe has less than 300 mm depth of cover under an area other than a vehicular area, it should have concrete paving slabs laid as bridging on granular or other flexible filling at least 75 mm above the top of the pipe. If the UPVC pipe has less than 600 mm bridging in a similar manner.

If the material is suitable for use as bedding, the bottom of the trench may be trimmed to form the pipe bed. Otherwise, the trench should be excavated to an adequate depth below the level of the pipe to necessary thickness of bedding material.

The thickness of bedding under the pipes should be at least 100mm, but in very wet or soft conditions or where the trench bottom is very irregular, it may be necessary to increase this thickness.

Bedding should be properly compacted and finished so as to provide uniform support for the pipe. It is essential that bricks or other hard materials are not placed under the pipes for temporary or permanent support.

BEDDING MATERIAL:

Material to be used for bedding and surrounding the pipes should be selected granular material.

Suitable Materials for UPVC Pipe Bedding:

Pipe ND (mm)	Bedding Material
110	10 mm single-sized granules
160	10 mm or 14 mm single-sized or 14 to 5 graded granules
200 and above	$10 \mathrm{~mm}, 14 \mathrm{~mm}$ or 20 mm single-sized, or 14 to 5 or 20 to 5 graded granules

Bedding material should not contain pieces with sharp edges. The maximum particle size should generally not exceed 20 mm . The presence of an occasional particle between 20 mm and 40 mm is acceptable provided the total quantity of such particles is only a very small fraction.

TESTING:

Tests should be carried out after the system has been installed before and after backfilling.
The following steps should be taken:

1. The system should be flushed out with water to clean any undesired matter before the test.
2. Air test: Air to be pumped into the system until a pressure of 100 mm head is achieved; Maximum loss of head on a manometer should not exceed 25 mm during a period of 5 minutes.
3. Water test: The system to be filled with water, a test pressure of 1.5 m head above the crown of the pipe is to be applied at the higher end of the sewer ensuring that the resultant head at the lower end is not exceeding 4.0m. The sewer should then be left filled with water for at least 1 hour. The level of the water in the stand pipe should be maintained by adding known quantities of water every 10 minutes for a period of 30 minutes. The loss of water should not exceed one liter per hour, per linear meter, per meter of nominal diameter.
4. Pressure hydrostatic testing specification will be at the discretion of the responsible Engineer but should not exceed $11 / 2$ times designed working pressure of the lowest rated component in the system and a time duration of 24 hours. A permissible water loss of 3 liters per kilometer of pipe per 25 mm nominal bore, per 3 bar of test pressure, per 24 hours, may be considered reasonable. Air testing is not recommended. If, however, for practical reasons, pneumatic testing is necessary, this should be limited to a maximum pressure of 1.5 bar.

(6) OReqistration
 Awarded to

PIPES TECHNOLOGY CO W.L.L

at

P.O.BOX NO:23783, OFFICE NO: 21 , BUILDING NO: 05, BARWA VILLAGE, AL WAKRA ROAD, DOHA, QATAR

Quality Registrar Systems certify that the management system of the above organization has been audited and found to be in compliance with the QRS requirements for registration of the management system standard detailed below:

ISO 9001:2015

Quality Management Systems

Scope of work

$>$ SUPPLY OF THERMOPLASTIC PIPES, FITTINGS AND VALVES
$>$ TRADING OF BUILDING MATERIALS
$>$ ELECTRICAL AND SANITARY CONTRACTING
> WATER NETWORKS FOR BUILDING SUPPLY WORKS

Certificate No: AQQ-10119
Originally Registered: 05 APR 2015
Latest Issue: 25 APR 2018
Valid up-to: 04 APR 2021

MANAGING OFFICE ADDRESS:
Quality Registrur Systems
PO, Bos 26626

United Arab Eunirates

Tet: +971-2-6714302 Fax: +971-2-6741449 www.quyst com

Pipesĩ̄C(H)

شركة تكنولوجيـا الانابيب ذ.م.م PIPES TECHNOLOGY CO. W.L.L.
P.O. Box: 23783 Doha - State of Qatar

Tel. +974 44813130
+974 44514822
+97444514833
Fax.+974 44814577
E-mail: pipestech@qatar.net.qa info@pipestech.com www.pipestech.com

[^0]: *Available in Rubber Ring

[^1]: Dimensions in millimeters

[^2]: *Dimensions in millimeters

